Active Humidity Control & Continuous Ventilation For Improved Air Quality In Schools

Charlene W. Bayer Robert J. Hendry Amy Cook Sidney C. Crow John C. Fischer Chris Downing

Premise

- Investigation into the impact of active humidity control & continuous ventilation on school IAQ
- Targeting desiccant-cooling technologies
- Helping to meet US DOE goal of improving energy efficiency and to dispel belief that desiccant dehumidification systems are too costly

- Measure the importance of humidity control & continuous ventilation
- Develop baseline IAQ data for schools in hot & humid climates
- Provide data & recommendations for HVAC designs for improved schools IAQ
- 4. Document role of desiccant technologies to actively control humidity in schools
- 5. Provide data for school systems to specify the use of desiccant technology

Georgia Tech Research Institute

Charlene Bayer (PI)

Bob Hendry (sampling)

Amy Cook (analytical analysis)

Chris Downing (mechanical engineer – energy efficiency)

Georgia State University

Sidney Crow (Microbiologist)

Stephanie Hagen (Microbiological sampling & analysis)

Semco Inc.

John Fischer (mechanical engineer – desiccant systems consultant & energy efficiency)

Two Phases

- >Phase 1
 - -10 Schools Investigation

- ▶Phase 2
 - One School Intervention Investigation

Phase 1: Technical Approach

- 1. Literature review of school IAQ
- 2. Field investigation of IAQ in 10 non-complaint Georgia schools
 - a. Matched pairs of schools with conventional HVAC systems and schools with desiccant cooling HVAC systems
 - b. Continuous monitors placed in each school for CO₂, temperature, and relative humidity for approximately one year
 - c. Diffusion VOC samplers in classrooms continuously for one year, changed approximately every 30 days.
 - d. Active samples collected four to six times

Active Monitoring Parameters

- 1. VOCs
- 2. Particles
- 3. Bioaerosols
- 4. Aldehydes & ketones
- 5. CO₂
- 6. CO
- 7. NO₂
- 8. Temperature
- 9. Relative humidity
- 10. Air change rate

Continuous Monitoring

Continuous monitor placed in breathing zone in one classroom of each school measuring temperature, relative humidity, and CO₂

Diffusion tubes for VOCs placed in the breathing zone in one classroom in each school & changed approximately every 30 days.

HVAC System Diagram

- Four different designs studied
 - Outdoor Air & Exhaust Ducted
 Directly into Space
 - Outdoor Air & Exhaust Ducted to Heat Pump Return Duct
 - Outdoor Air Ducted to Heat Pumps,
 No Exhaust Air Path
 - Outdoor Air & Exhaust Ducted to Common Return Plenum

System Design Effects Operation & Maintenance

Outdoor Air & Exhaust Ducted to Common Return Plenum

CO₂ Comparison

CO₂ With & Without Desiccant Operating

Contaminant Level Comparisons

TVOC Concentrations (µg/m³)

Fromaldehyd Conc (µg/m³)

Space Humidity with & without Desiccant

Effect of Weekend Shutdown

Humidity Level vs Ventilation Rate Modeling

Modeled Energy Savings From 2°C Rise

Student Absenteeism Data

- *Absenteeism data showed trend in improved school attendance
- Larger population study necessary for statistical confirmation

	Percent Absent											
School	Nov98	Dec98	Jan99	Feb99	Mar99	Apr99	May99	Aug99	Sep99	Oct99	Nov99	Avg
Α	5.30	6.00	6.90	6.90	7.30	7.30	7.80	4.20	4.20	5.60	5.60	6.10
J	3.60	4.10	4.90	4.90	4.80	4.80	4.80	2.80	2.80	3.70	3.70	4.08
Е	4.24	2.20	4.05	6.11	5.72							4.46
R	3.19	2.46	2.55	4.80	4.31							3.46
L	5.39	5.70	7.92	6.57		6.26	6.75		3.48			6.01
Р	4.85	3.17	6.35	6.66	6.04				1.29			4.73
G	2.76	2.89	3.49	3.65		3.81	3.55					3.36
U	3.91	4.61	4.67	3.30	3.35	4.17	4.92	2.07	2.46	3.06	3.15	3.61

Important Findings

Project Goals Met

- Measured importance of humidity control & ventilation on school indoor air quality
- Developed baseline of indoor air quality data for schools in hot & humid climates
- ✓ Provided data & recommendations for more energy efficient HVAC designs for improving indoor air quality in schools
- Documented role of desiccant technologies to actively control humidity in schools
- Provided data for school systems to justify specification of desiccant systems

Important Findings

- Found statistical significance of the importance of adequate ventilation demonstrates the importance of HVAC system design integrating desiccant cooling systems with conventional HVAC system components
- Demonstrated the importance of design for the integration of desiccant systems with conventional HVAC system components
- Demonstrated the importance of training for building specifiers & contractors and for facility maintenance staff on the purpose and operation & maintenance of desiccant technologies

Phase II: Technical Approach

- School with identified excess humidity and student/teacher health problems
- School designed in "pods" so that control and test areas available in same school
- County school board and school administrators agreeable to using school as research site

Phase II: Technical Approach

- Desiccant system to be installed on one pod of school
- Ductwork and VAV boxes to be replaced and upgraded
- Testing to be conducted before, immediately after, and six months after desiccant system installation

Phase II: Technical Approach

- At request of school and school system, all testing to be continuous monitoring (with the exception of microbial testing, which was performed after the school hours)
- Continuous monitors for temperature and relative humidity in 8 pod classrooms and 1 control classroom
- Continuous monitors for CO₂ in 4 pod classrooms and 1 control classroom
- One-month diffusion time-weighted averaged VOC sampling tubes placed in the 4 pod classrooms and 1 control classroom
- Airborne microbial samples collected in 4 pod classrooms and 1 control classroom

Phase II: Progress to Date

- Before intervention sampling conducted
 - Results still being analyzed
- Installation of ductwork, VAV, and desiccant system to be installed soon

Phase II: CO₂ Data Before Installation

Phase II: Humidity Before Installation

Research Addresses School Multiple School Concerns

- First Equipment Costs
- New HVAC technology
- Operating Costs
- Operating Convenience
- Classroom HVAC Design
- Classroom Productivity
- Student/Teacher Health
- Operation & Maintenance Issues
- IAQ Indicators

Publications

- Literature Review www.ornl.gov/ORNL/BTC/iaq.pdf
- ASHRAE IAQ 2001
- International Conference on Indoor Air 2002
- Paper in ASHRAE Summer 2001 IAQ Newsletter
- Invited lead article in May 2003 ASHRAE Journal
- Other publications in progress

Findings Dissemination

- Presentations at various school facility managers meetings
- Presentation at Texas Energy Conservation Group
- Interactions with various school facility managers
- Proposals prepared to develop IAQ management plans for San Antonio school systems
- Proposal to develop electronic media version of important findings and recommendations

Future Research Needs

- Research to link IAQ improvements to increased learning and school attendance and health
- Research to investigate improvements in asthma incidence in schools related to optimized IAQ
- Additional research into intervention impacts on IAQ and energy efficiency in schools
- Research into energy usage and improved IAQ into combined co-generation and desiccant technology systems for schools

This project was funded by the Department of Energy through Oak Ridge National Laboratories under contracts DEA C05840P21400 and 86X-SV044V and by Semco Inc.

Significant cost sharing by GTRI/Semco/ORNL for optimum use of limited funds